Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Commun ; 13(1): 1002, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1702683

ABSTRACT

The molecular events that permit the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to bind and enter cells are important to understand for both fundamental and therapeutic reasons. Spike proteins consist of S1 and S2 domains, which recognize angiotensin-converting enzyme 2 (ACE2) receptors and contain the viral fusion machinery, respectively. Ostensibly, the binding of spike trimers to ACE2 receptors promotes dissociation of the S1 domains and exposure of the fusion machinery, although the molecular details of this process have yet to be observed. We report the development of bottom-up coarse-grained (CG) models consistent with cryo-electron tomography data, and the use of CG molecular dynamics simulations to investigate viral binding and S2 core exposure. We show that spike trimers cooperatively bind to multiple ACE2 dimers at virion-cell interfaces in a manner distinct from binding between soluble proteins, which processively induces S1 dissociation. We also simulate possible variant behavior using perturbed CG models, and find that ACE2-induced S1 dissociation is primarily sensitive to conformational state populations and the extent of S1/S2 cleavage, rather than ACE2 binding affinity. These simulations reveal an important concerted interaction between spike trimers and ACE2 dimers that primes the virus for membrane fusion and entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Algorithms , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Host-Pathogen Interactions , Humans , Membrane Fusion , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Multimerization , Receptors, Virus/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Attachment , Virus Internalization
2.
Biophysical Journal ; 121(3, Supplement 1):330a, 2022.
Article in English | ScienceDirect | ID: covidwho-1675867
3.
Biophys J ; 120(6): 1097-1104, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-947143

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Computer simulations of complete viral particles can provide theoretical insights into large-scale viral processes including assembly, budding, egress, entry, and fusion. Detailed atomistic simulations are constrained to shorter timescales and require billion-atom simulations for these processes. Here, we report the current status and ongoing development of a largely "bottom-up" coarse-grained (CG) model of the SARS-CoV-2 virion. Data from a combination of cryo-electron microscopy (cryo-EM), x-ray crystallography, and computational predictions were used to build molecular models of structural SARS-CoV-2 proteins, which were then assembled into a complete virion model. We describe how CG molecular interactions can be derived from all-atom simulations, how viral behavior difficult to capture in atomistic simulations can be incorporated into the CG models, and how the CG models can be iteratively improved as new data become publicly available. Our initial CG model and the detailed methods presented are intended to serve as a resource for researchers working on COVID-19 who are interested in performing multiscale simulations of the SARS-CoV-2 virion.


Subject(s)
Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Virion/chemistry , COVID-19 , Principal Component Analysis , Viral Proteins/chemistry
4.
bioRxiv ; 2020 Oct 02.
Article in English | MEDLINE | ID: covidwho-835255

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Computer simulations of complete viral particles can provide theoretical insights into large-scale viral processes including assembly, budding, egress, entry, and fusion. Detailed atomistic simulations, however, are constrained to shorter timescales and require billion-atom simulations for these processes. Here, we report the current status and on-going development of a largely "bottom-up" coarse-grained (CG) model of the SARS-CoV-2 virion. Structural data from a combination of cryo-electron microscopy (cryo-EM), x-ray crystallography, and computational predictions were used to build molecular models of structural SARS-CoV-2 proteins, which were then assembled into a complete virion model. We describe how CG molecular interactions can be derived from all-atom simulations, how viral behavior difficult to capture in atomistic simulations can be incorporated into the CG models, and how the CG models can be iteratively improved as new data becomes publicly available. Our initial CG model and the detailed methods presented are intended to serve as a resource for researchers working on COVID-19 who are interested in performing multiscale simulations of the SARS-CoV-2 virion. SIGNIFICANCE STATEMENT: This study reports the construction of a molecular model for the SARS-CoV-2 virion and details our multiscale approach towards model refinement. The resulting model and methods can be applied to and enable the simulation of SARS-CoV-2 virions.

SELECTION OF CITATIONS
SEARCH DETAIL